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NUMERICAL MODELING OF THE SINGLE-PHASE STEFAN PROBLEM

IN A LAYER WITH TRANSPARENT AND SEMITRANSPARENT BOUNDARIES

UDC 536.3+536.42N. A. Rubtsov,1 S. D. Sleptsov,1 and N. A. Savvinova2

Numerical modeling of the single-phase Stefan problem in a semitransparent layer with transparent,
nonabsorbing, and partially radiation-absorbing boundaries is performed. It is shown that at low tem-
peratures of the medium, convection is a determining factor on the boundary of the irradiated sample,
and at high temperatures, radiation is predominant. The absence of absorption on the boundaries
of the layer leads to acceleration of the heating of the plate and considerable deceleration of melting
processes.
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Introduction. Interest in studies of radiative–conductive heat transfer in transparent media taking into
account a first-order phase transition has considerably increased because of practical applications of this process
(glassmaking, crystal growth, thermal protection, and ice melting). The first numerical simulation of the single-
phase Stefan problem in a material layer with different parameters of volume absorption and emission of radiation
was performed in [1]. In this paper, a transformation was introduced that fixes the phase transition front [2]. This
facilitates a qualitative analysis of the solution results but hinders the calculation process. The radiation part of
the problem was solved by the method of discrete ordinates and a directional beam. Following [1], the single-
phase Stefan problem was considered in [3] taking into account the radiation reflection from the boundaries of the
transparent layer. In this study, unlike in [1], the radiation term of the energy equation was determined using the
effective mean-flux method [4]. The indicated method yielded results in good agreement with the results of [1].

Formulation of the Problem and Method of Solution. In the present paper, we study the heating
and subsequent melting of an infinite plane–parallel sample with a semitransparent (absorbing, emitting, and
nonscaterring) gray medium. As in [5], as a fist step, we consider the unsteady radiative–conductive heat transfer in
the process of heating of the sample by radiation and convection. In the second step, when boundary of the sample
reaches the melting point, the Stefan problem is considered. The liquid phase formed on the boundary is sublimated
and carried away by convection. The position of the interface S(t) is determined by solving the boundary-value
problem, which amounts to determining the temperature fields and fluxes in a solid-phase layer of thickness varying
from x = 0 to x = S(t) (Fig. 1).

Under the assumption of constant thermal properties of the medium, the energy equation in the solid plate
is written as

∂T (x, t)
∂t

= a
∂2T (x, t)

∂x2
− 1

ρcp

∂E

∂x
, 0 � x � S(t), t > 0, (1)

where a and ρ are the thermal diffusivity and density of the solid phase, cp is the specific heat at constant pressure,
E is the density of the resultant radiation flux in the gray medium layer, which is expressed in terms of the forward
radiation intensity I+(x, µ, t) and backward radiation intensity I−(x, µ, t) as follows:
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Fig. 1. Geometrical diagram of the problem.

E(x, t) = 2π

1∫

0

(I+(x, µ, t) − I+(x, µ, t))µ dµ = E+(x, t) − E−(x, t).

Here E±(x, t) is the flux density of the hemispherical (within the solid angles Ω = ±2π) incident radiation (see
Fig. 1).

For the case of transparent (nonabsorbing) boundaries in the problem considered in the second step of the
solution taking into account the Stefan condition on the interface, the boundary conditions are written as

−λ
∂T (0, t)

∂x
= h1(T1 − T (0, t)); (2)

λ
∂T (S(t), t)

∂x
− h2(T2 − T (S(t), t)) = ργ

∂S(t)
∂t

. (3)

System (1)–(3) is supplemented by the initial condition

T (x, 0) = f(x), S(0) = S0. (4)

Here λ is the thermal conductivity of the sample, hi is the coefficient of heat transfer to the ambient medium,
Ti is the temperature of the medium on the left and right of the sample, and γ is the latent heat of melting; the
subscripts i = 1 and 2 correspond to the left and right boundaries of the sample, respectively.

In the first step of the solution, S(t) in the energy equation (1) should be set identically equal to the initial
thickness S0 and the right side of Eq. (3) should be set equal to zero.

Rendering the energy equation dimensionless, we use the transformation of [2], which transforms the phase
transition front to a fixed boundary for ξ = x/S(t) ≡ 1. This is done using the dimensionless variables θ = T/Tf ,
ξ = x/S(t), s(η) = S(t)/S0, and η = λt/(ρcpS

2
0). Equation (1) in the indicated variables becomes

∂θ(ξ, η)
∂η

= ξ
ṡ

s

∂θ(ξ, η)
∂ξ

+
1
s2

∂2θ(ξ, η)
∂ξ2

− 1
Ns

∂Φ(ξ, η)
∂ξ

, 0 � ξ � 1, (5)

and boundary conditions (2) and (3) become

−∂θ(0, η)
∂ξ

= s Bi1(θ1 − θ(0, η)); (6)

∂θ(1, η)
∂ξ

− s Bi2(θ2 − θ(1, t)) =
sṡ

St
. (7)
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Here N = λ/(4σ0T
3
r S0) is the radiative–conductive parameter, Φ±(ξ, τ) = E±(x, t)/(4σ0T

4
r ) is the dimensionless

radiation flux density, Bii = hiS0/λ is the Biot number, St = cpTr/γ is the Stefan number, Tr = Tf is the
determining temperature equal to the phase-transition temperature, ṡ = ds/dη, and σ0 is the Stefan–Boltzmann
constant.

The initial condition (4) becomes

θ(ξ, 0) = f(ξ), s(0) = 1. (8)

If the boundaries of the layer partially absorb, reflect, and transmit radiation, the boundary conditions of the
problem (2) and (3) are written as

−λ
∂T (0, t)

∂x
+ A1[E−(0, t) + σ0T

4
1 ] − ε1(1 + n2)σ0T

4(0, t) = h1(T1 − T (0, t)); (9)

λ
∂T (S(t), t)

∂x
− h2(T2 − T (S(t), t)) − A2[E+(S(t), t) + E∗]

+ ε2(1 + n2)σ0T
4(S(t), t) = ργ

dS(t)
dt

. (10)

Here Ai satisfies the balance relation of the dimensionless fluxes on the boundaries of the sample

Ai + Ri + Di = 1, (11)

where Ai, Ri, and Di are the values of the hemispherical absorption, reflection, and transmission coefficients of the
boundaries, respectively, and εi is the emissivity factor of the boundaries (below, it is assumed that εi = Ai).

The dimensionless form of Eqs. (9) and (10) is written as

−∂θ(0, η)
∂ξ

+ s Bi1(θ(0, η) − θ1) − A1s

N

(
Φ− +

θ4
1

4
− 1 + n2

4
θ4(0, η)

)
= 0; (12)

∂θ(1, η)
∂ξ

− s Bi2(θ2 − θ(1, η)) − A2s

N

(
Φ+ + F ∗ − 1 + n2

4
θ4(1, η)

)
=

sṡ

St
. (13)

In the formulation considered, solution of the problem reduces to determining the temperature θ(ξ, η) and
density of the resultant radiation flux Φ(ξ, η) in the region G = {0 � ξ � 1; 0 � η � η1}, which is a flat layer of the
solid phase. The position of the phase transition front s(η) varies from 1 to 0.

The boundary-value problems (5)–(7) and Eqs. (5), (12), and (13) are solved by a finite-difference method,
and the nonlinear system of implicit difference equations by a sweep method and iterations. In Eqs. (5)–(7), (12),
and (13), the radiation fluxes are internal sources and are found by solving the radiation transfer equation with a
known temperature distribution for the flat layer of the emitting and absorbing medium.

As applied to radiation heat transfer, the modified mean-flux method [3, 4] offers wide capabilities for
calculations of the radiation transfer in absorbing and emitting media taking into account radiation reflection from
the boundary surfaces. In this method, the integrodifferential equation of radiation transfer reduces to a system of
two non-linear differential equations for the a flat layer of a semitransparent medium. For hemispherical fluxes, the
differential analog of the radiation transfer equation is written as

d

dτ
(Φ+(τ, η) − Φ−(τ, η)) + (m+(τ)Φ+(τ, η) − m−(τ)Φ−(τ, η)) = n2Φ0; (14)

d

dτ
(m+(τ)δ+(τ)Φ+(τ, η) − m−(τ)δ−(τ)Φ−(τ, η)) + (Φ+(τ, η) − Φ−(τ, η)) = 0. (15)

The boundary conditions on the transparent, diffusely emitting, and reflecting surfaces are given by

Φ+(0, η) = (1 − R1)
θ4
1

4
+

(
1 − 1 − R1

n2

)
Φ−(0, η); (16)

Φ−(1, η) = (1 − R2)
(
F ∗ +

θ4
s

4

)
+

(
1 − 1 − R2

n2

)
Φ+(1, η). (17)

Here θ4
1 = T 4

1 /T 4
r , θ4

s = T 4
s /T 4

r , and F ∗ = E∗/(4σ0T
4
r ) is the dimensionless density of the flux incident on the plate

from the right and n is the index of refraction.
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The boundary conditions on the diffusely reflecting, transmitting, and partially absorbing (emitting) surfaces
are given by

Φ+(0, η) = ε1n
2 θ4(0, η)

4
+ D1

θ4
1

4
+

(
1 − 1 − R1

n2

)
Φ−(0, η); (18)

Φ−(1, η) = ε2n
2 θ4(1, η)

4
+ D2F

∗ +
(
1 − 1 − R2

n2

)
Φ+(1, η); (19)

Φ±(τ, η) =
2π

4σT 4
r

1(0)∫

0(−1)

I(τ, µ)µ dµ,

m±(τ) =

1(0)∫

0(−1)

I(τ, µ) dµ
/ 1(0)∫

0(−1)

I(τ, µ)µ dµ,

δ±(τ) =

1(0)∫

0(−1)

I(τ, µ)µ2 dµ
/ 1(0)∫

0(−1)

I(τ, µ)µ dµ.

Here I is the radiation intensity, µ is the cosine of the angle between the propagation direction of the radiation
and the x axis, τ = αS(t) is the optical thickness of the layer at the time t, α is the absorption coefficient, Ri is
the coefficient of hemispherical radiation reflection by the nonabsorbing boundaries of the layer (calculated by the
Walsh–Dunkl formula). The values of m± and δ± are determined from the recursive equation obtained by formal
solution of the radiation transfer equation [6, 7]. The radiation flux density is given by

Φ(τ, η) = Φ+(τ, η) − Φ−(τ, η). (20)

The radiation problem is solved using iterations, in each step of which the boundary-value problem (14)–(20)
is solved by the matrix factorization method. The rapid convergence of this method of solution ensures high-accuracy
results.

The temperature and radiation flux fields were calculated numerically, and the position of the phase transition
front and the temperature variation on the left boundary of the sample were determined. The calculations were
performed for the following parameter values: S0 = 0.1 m, Tf = 1000 K, T1 = 300 K, T2 = 900 K, E∗ = 120 kW/m2,
ρ = 2000 kg/m3, λ = 1 W/(m · K), a = 10−6 m2/sec, γ = 500 kJ/kg, h1,2 = 1 W/(m2 · K), n = 1.5, α = 10 m−1,
and A1,2 = 0.1; for the transparent boundaries, the reflection coefficient R1,2 = 0.092 was calculated by the Walsh–
Dunkl formula, and for the semitransparent boundaries, R1,2 = 0.1.

The optimal parameters of the external action on a volumetrically absorbing layer with transparent (non-
absorbing) boundaries were determined using the results of [5]. This allows uniform heating of the sample to be
implemented up to the moment the phase transition conditions are attained. In the present study, we considered
situations where the sample was subjected to a convective flow on the right at a fixed temperature T2 = 900 K.

Figure 2 gives the results of calculations of the heating and melting of a plate with reflecting and nonabsorbing
boundaries due to radiative–convective heating of the right surface. In this case, the processes occur under the action
of the maximum radiation flux penetrating into the plate (the reflection losses by the right boundary are minimal).
The nature of the temperature fields in the layer (Fig. 2a) is determined by the radiation and depends slightly
on ambient temperature. The plate is rapidly heated to the phase transition temperature on the right boundary
(curve 2 in Fig. 2a). In a detailed consideration of the temperature field in the phase transition process (Fig. 2b),
one can clearly see the overheating zone near the right boundary of the sample, which is determined by the heat
transfer for a fixed value of the phase transition temperature Tf . The maximum overheating is observed for s = 0.9
(Fig. 2b). During the melting of the plate, the temperature maximum is shifted to its middle and the temperature
distribution in the plate (s = 0.223) becomes quasi-isothermal. The melting process is extended in time. The
resultant radiation flux of negative magnitude, increases monotonically with distance from the right wall, takes the
nature of a linear distribution with time (Fig. 2c and d), and becomes nearly constant in the process of melting

380



0.2 0.4 0.6 0.8 1.0 x

o

1

1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

F F

2

2

2

3

3

3

3

s=1.0

0.9

0.7

0.5

0.223

0.2 0.4 0.6 0.8 1.0 x

o

0.96

0.98

0.94

0.92

1.02

1.00

0

0.2 0.4 0.6 0.8 1.0 x

_0.25

_0.24

_0.26

_0.27

_0.28

_0.29

_0.23

00.2 0.4 0.6 0.8 1.0 x

_0.4

_0.5

_0.3

_0.2

_0.1

0

0

à b

c d

Fig. 2. Temperature distributions (a and b) and radiation flux density distributions (c and d) in the sample
in the absence of absorption for R2 = 0.092 and T2 = 900 K: (a and c) heating and melting; (b and d)
melting; curves 1 refer to t = 55 sec (the beginning of the process), curve 2 refer to t = 1003 sec (the onset
of the phase transition), and curves 3 refer to t = 30,753 sec (the end of the process).

and thinning of the plate (s → 0.2) (curves 3 in Fig. 2c and d). The latter is due to the quasi-isothermicity of the
material of the thin plate with a small optical thickness. In this case, because of the nearly isothermal temperature
distribution, the total flux q = −λ∂T/∂x+ E becomes almost equal to the resultant radiation flux density: q ≈ E.

It should be noted that under the conditions considered, where the boundaries of the layer do not absorb
but transmit radiation, the phase transition on the right side of the layer leads to a considerable increase in the
time of melting. In this case, the melting process is completed for a dimensionless layer thickness s � 0.2.

Weak absorption of radiation by the boundaries (Ai = εi = 0.1) changes the nature of the plate heating
(Fig. 3a) and reduces the time of melting. In the neighborhood of the heated boundary, an extremum appears that
is due to radiation absorption upon heating (see Fig. 3a) and the occurrence of phase transition with fixed value
of the melting point (Fig. 3b). The resultant radiation flux density distribution (Fig. 3c and d) is characterized by
the presence of breaks due to optical nonuniformity in the phase transition period (Fig. 3d), and at the end of the
process, it becomes quasilinear (curve 3 in Fig. 3d).

From Fig. 4a, one can see that the temperature of the left boundary does not depend on the optical properties
of the boundaries, which is explained by convective cooling of the boundary at T1 = 300 K. The considerable
temperature growth on the left boundary of the layer is observed during the first 1000 sec of the process, i.e., before
the onset of the phase transition, after which the growth curve is stabilized and reaches a quasi-stationary regime.
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Fig. 3. Temperature distributions (a and b) and radiation flux density distributions (c and d) in the
sample for partial radiation absorption (A2 = 0.1) and R2 = 0.1 T2 = 900 K: (a, c) heating and melting;
(b, d) melting; curves 1 refer to t = 127 sec (the beginning of the process), curves 2 refer to t = 1292 sec
(the onset of the phase transition), and curves 3 refer to t = 12,890 sec (the end of the process).
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Fig. 4. Time evolution of the temperature of the left boundary (a) and the position of the melting front (b)
at T2 = 900 K and A2 = 0.1: 1) transparent boundary; 2) semitransparent boundary.
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The position of the melting front during the heating and melting of the plate is shown in Fig. 4b. It is obvious that
the time of plate melting depends even on an indignant absorption of the radiation by the right boundary. We note
that the indicated circumstance can be of significance when taking account the nebulosity of the surface layer due
to a change in the optical properties of the plate material upon the phase transition.

Conclusions. The results obtained in the present study allow one to estimate the role of boundary conditions
in the formation of a thermal field in a flat plate during its heating and melting. The absence of radiation absorption
by the plate boundaries leads to a considerable deceleration of the melting process compared to the case of total
radiation absorption by the sample boundaries considered in [1, 3]. The insignificant absorption on the irradiated
boundary of the plate due to a possible change in the optical properties of the plate material upon the phase
transition considerably accelerates the processes compared to the case of nonabsorbing boundaries.

This work was supported by the foundation Leading Scientific Schools of Russia (Grant No. NSh-523.2003.1).

REFERENCES

1. V. Le Dez, F. Yousefian, R. Vaillon, et al., “Problem de Stefan direct dans un milieu semitransparent gris,”
J. Phys. France., Ser. 3, 6, 373–390 (1996).

2. H. G. Landau, “Heat conduction in a melting solid,” Quart. Appl. Math., 8, 81–94 (1950).
3. N. A. Rubtsov, N. A. Savvinova, and S. D. Sleptsov, “Single-phase Stefan problem for a semitransparent medium

with allowance for radiation reflection,” Teplofiz. Aéromekh., 10, No. 2, 255–264 (2003).
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